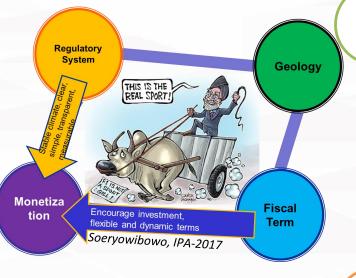


Indonesia Investment Opportunity

Singapore, 6 – 10 Maret 2023

DG

HASIF - AGRESIF - EFISIEN


O humasskkmigas

STAKE HOLDER-WHERE IS SKKMIGAS

WHAT IS NEW IN INDONESIA?

LONG TERM PLANNING – 1 MILLION BOPD & 12 BSCFG

Open Area Effort-New Data Acquisition

Improvement Open Area T&C

Investment Opportunity

This document is **strictly confidential** and may not be reproduced or circulated without SKK Migas' prior written consent.

skkmigas

Ministry of Energy and Mineral Resources: Organizing Government Affairs, Establishing Policies, and Supervising Compliance with Applicable Regulations.

DITJEN MIGAS

SPEC

SURVEY

+

PREPARE

BLOCKS

Direct Tender Direct Proposal Open Tender

BLOCK

OFFERINGS.

TENDER,

AWARD

SKK MIGAS:

Supervising and Controlling the Implementation PSC Contracts.

Contractors: Implement Contracts

CONTRACT YEARS	DESCRIPTION	A	TIVITY	BUDGET		
, Entro		UNIT	AMOUNT	UNIT	AMOUNT	
	G and G			US.S	500,000	
First	Seismic 2D Acquisition and processing	км	60	US.\$	2,000,000	
	Seismic 3D Acquisition and processing	KM ²		US.\$		
	Exploratory well	Well		US.\$		
	G and G			110.0	600.000	
	Seismic 2D	1			500,000	
Second	Acquisition and processing	KM		US.\$		
	Seismic 3D Acquisition and processing	KM ²		US.\$		
	Exploratory weil	Well		US.\$		
	G and G			119.6	500.000	
	Seismic 2D			03.5	300,000	
Third	Acquisition and processing	КМ		US.5 500.000 US.5 2,000.000 US.5 2,000.000 US.5 500.000 US.5 500.0000 US.5 500.00000 US.5 500.00000 US.5 500.00000 US.5 500.00000 US.5 500		
	Seismic 3D Acquisition and processing	KM ²		110.0	\$ \$ 500,000 \$ \$ \$	
	Exploratory well	Well				
	Exploratory work	men		00.0		
	G and G			US.\$	500,000	
E	Seismic 2D Acquisition and processing	км		US.5		
Fourth	Seismic 3D Acquisition and processing	KM ²		US.\$		
	Exploratory well	Well	1	US.\$	21,000,000	
	G and G			1100	500.000	
	Seismic 2D	KM	1		500,000	
Fifth	Acquisition and processing Seismic 3D			0.010		
	Acquisition and processing	KM ²		US.\$		
	Exploratory well	Well		US.\$		
	G and G			110.0	500.000	
	Seismic 2D		·		500,000	
Sixth	Acquisition and processing	км		US.\$		
Six III	Seismic 3D Acquisition and processing	KM ²		US.\$	1	
	Exploratory well	Well		US.S		
		1			1	

EXPLOITATION

LIFTING

BPHMIGAS:

Supervise the implementation of the supply and distribution of fuel and transportation of natural gas through pipes

PERTAMINA:

Providing and distributing subsidized

FUEL SUPPLY

DOWNSTREAM

O&G SALES

PERTAMINA

Other

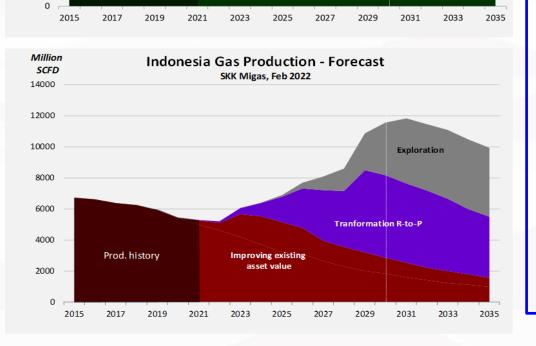
Downstream

UPSTREAM

EXPLORATION

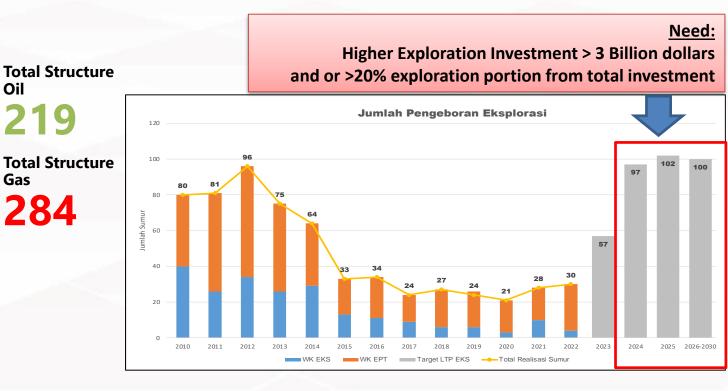
CONTRACT

SIGNING


WHAT IS NEW?

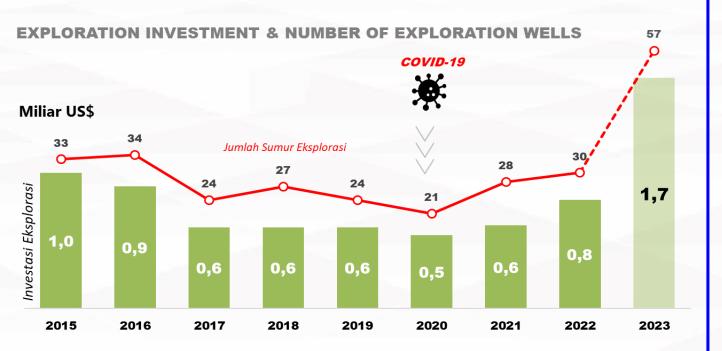
Prospectivity Readiness . One Door Service Policy • DRO/AOI More New Data Regulatory System Project File Ready Geology te, clear, THIS IS THE REAL SPORT , transparent, measurable table cl simple, • POD or POP Flexible Cost Rec/Gross Split Monetiza **Fiscal** Win-Win solution to Encourage investment, ٠ **Exploration Tax exemption** tion ٠ Term flexible and dynamic terms make asset become New Split Regime Soeryowibowo, IPA-2017 producing

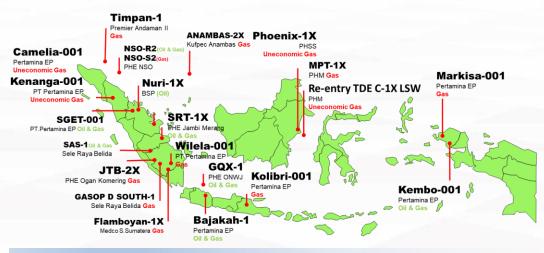
Thousand **Indonesia Oil Production - Forecast** BOPD SKK Migas, Feb 2022 1200 1000 Exploration 800 WF / EOR 600 Tranformation R-to-P 400 Improving existing asset value Prod. history 200


LONG TERM PLANNING

1 Million BOPD & 12 BCFGPD at 2030

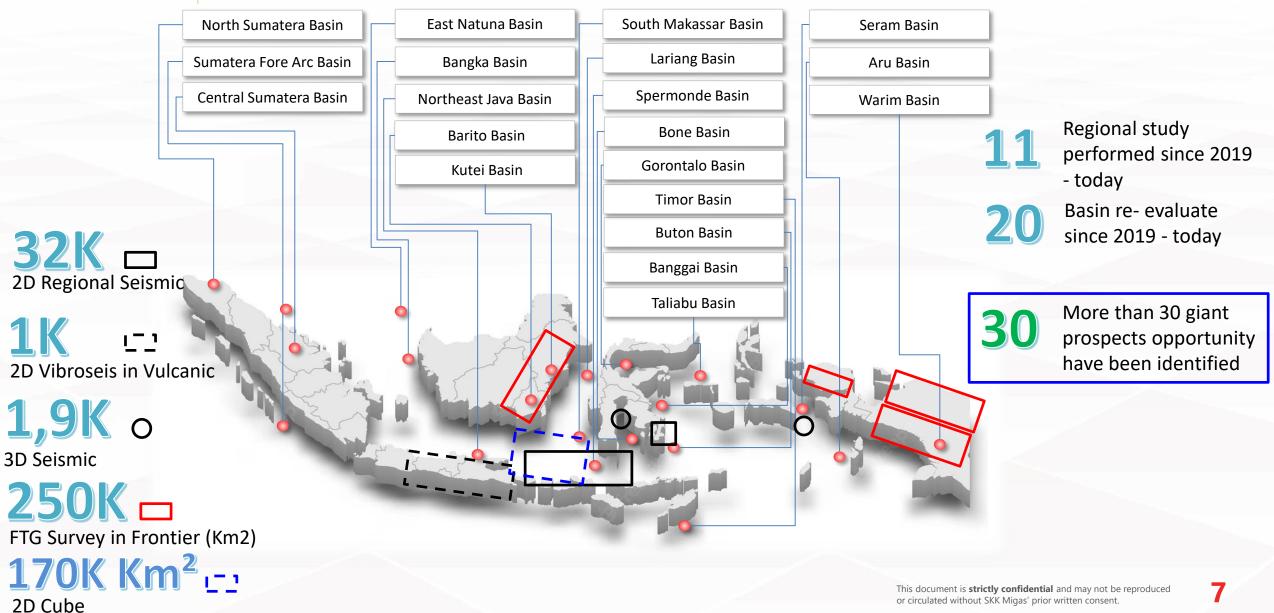
Shifting Paradigm


From Revenue Generator to production for generate a multiplier effect in supporting national economic growth.


Exploration Layer Contribution-From Existing Blocks

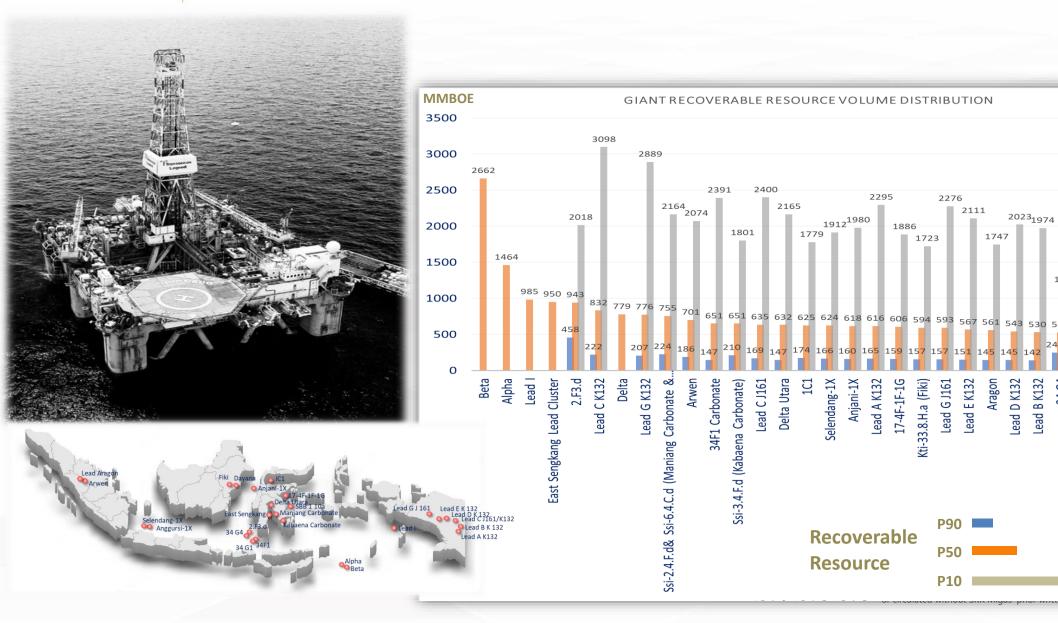
INDONESIAN EXPLORATION 2022

27 Exploration wells, with Success Ratio **81%**


Contingent Resources

> 500 **MMBOE**

Mature Basin still give an exciting result



INDONESIA EXPLORATION EFFORT in Open Area SINCE 2019 - NOW

INDONESIA EXPLORATION OPPORTUNITY-THE GIANT

Anggursi-1X

34G1 Carbonate

SBB1 1Ca

Kti-32.8.H.b (Dayana)

Anjani-1X

34.G4

Lead B K132

Improvement T&C on Bidding Round

Aspect	Explanation
Profit Sharing	Split of profit sharing up to 50:50 for very high-risk Work Area
FTP	Reduced to 10% (shareable)
Signature Bonus	Open bid (No Minimum Bonus)
PSC Scheme	Flexible, Cost Recovery or Gross Split
DMO Price	100% ICP during the contract period
Area Relinquishment	0% for the first 3 year
Cost Recovery	No cost ceiling
Data Access	Free, pay if announced as winner or apply for MDR membership
Tax Facilities	In Exploration and Exploitation period (GR Num. 27/2017 and GR Num. 53/2017)
Other Incentives	Investment credit, accelerated depreciation
Commercialization	Block basis

Diek	Profit Sharing						
Risk	Oil	Gas					
Very Low	80:20	75:25					
Low	75:25	70:30					
Moderate	70:30	60:40					
High	60:40	55:45					
Very High	55:45	50:50					

RISK: GCF (50%), Total Resources (30%), Production Facilities (20%)

Open Area

•New Block by regular processes (JS & Direct Proposal & Bid Round)

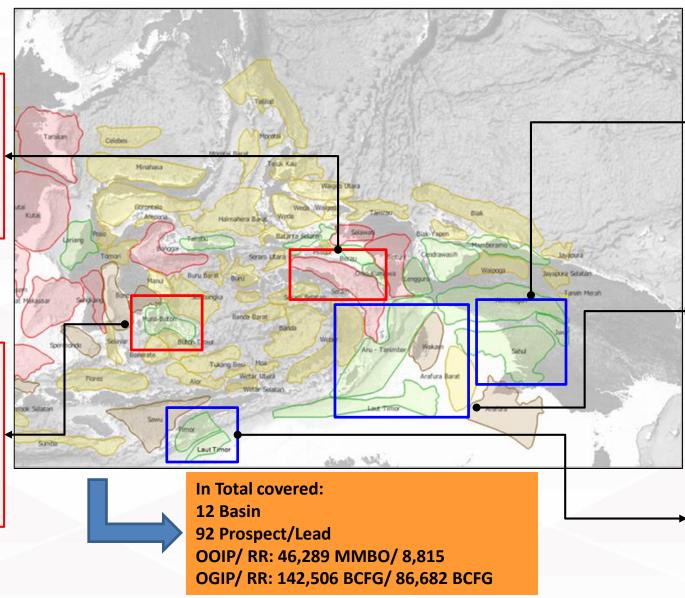
Farm In/Farm Out in Existing

- 14 Exploration Blocks
- 6 POD Blocks
- 9 Production Blocks

Strategic Alliance for Idle Wells

• >10,000 Idle Wells

5 FOCUS AREA INVESTMENT OPPORTUNITY


Proven Petroleum Basins – just wait for explorer to find the pool

SERAM AREA

Basin : Seram, Onin-Kumawa Prospect/Lead: 9 Resources (P50) OOIP/RR : 7,596 MMBO/ 1.123 MMBO OGIP/RR : 11,520 BCFG/ 8,050 BCFG Recom: 3D seismic Survey in SE Seram area (700 – 1000 Km2)

BUTON AREA

Basin: Muna-Buton Prospect/Lead: 9 Buton Straits dan 32 Buton NE Resources (P50) OOIP/RR : 984.4 MMBO/ 302 MMBO OGIP/RR : 3,860 BCFG/ 1,940 BCFG Recom : 2D Seismic Survey (200-500 Km)

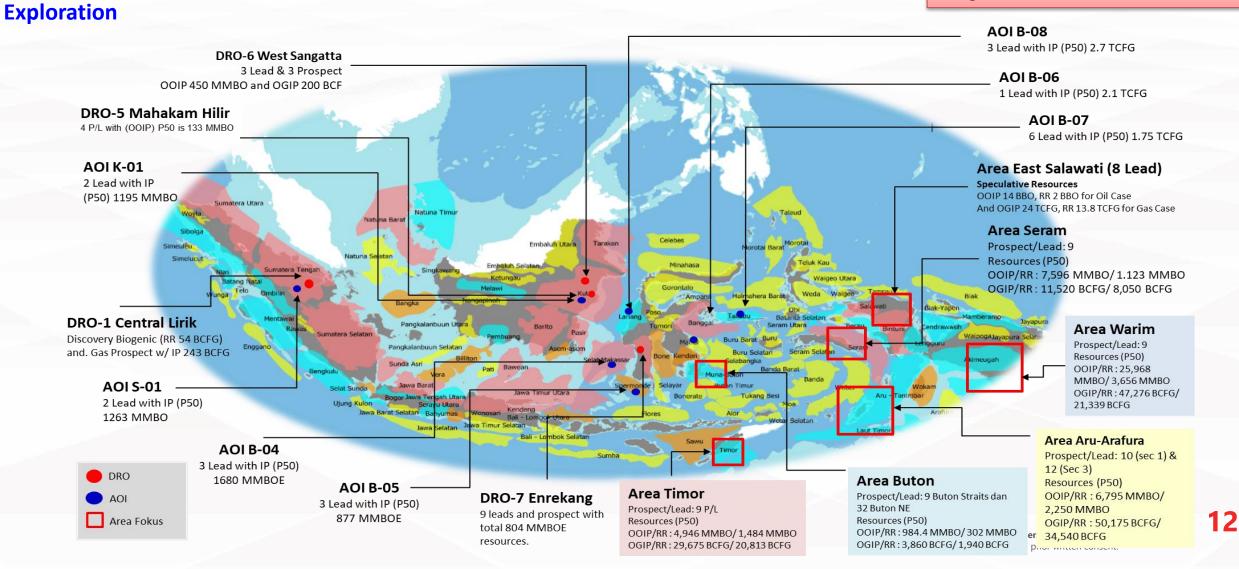
WARIM AREA

Basin: Iwur, Akimeugah, Sahul Prospect/Lead: 9 (with Jura & Cret) Resources (P50) OOIP/RR : 25,968 MMBO/ 3,656 MMBO OGIP/RR : 47,276 BCFG/ 21,339 BCFG Recom : Drill exploration/stratigraphic wells proving PNG Play and Foreland play

ARU-ARAFURA AREA

Basin: Laut Timor, Aru-Tanimbar, Wokam, Arafura Barat, Arafura Prospect/Lead: 10 (sec 1) & 12 (Sec 3) Resources (P50) OOIP/RR : 6,795 MMBO/ 2,250 MMBO OGIP/RR : 50,175 BCFG/ 34,540 BCFG Recom : 3D survey Seismik within AOI **18000 Km2 –** imaging Basin Floor Fan Play

TIMOR AREA


Basin: Timor dan Laut Timor Prospect/Lead: 9 P/L Resources (P50) OOIP/RR : 4,946 MMBO/ 1,484 MMBO OGIP/RR : 29,675 BCFG/ 20,813 BCFG Recom : 2D Onshore Vibrosseismic 400-1000 Km

What's new?.. We will include The Economics parameter such as NPV, IRR

DRO-AOI Investment Opportunity Will be Release at 2nd Week of March 2023

4 DRO= Discoveries Resources Opportunity 7 AOI= Area of Interest for Exploration 6 Regional Area

See you in Nusa Dua Bali

4th International Convention on Indonesia Upstream Oil and Gas (IOGC) 2023 20-22 September 2023

Contact: investor@skkmigas.go.id

	谢谢	TERIMA KASIH	고맙습니다
	Grazie	THANK YOU	شكرًا لك
	Merci	Спасибо	Obrigada
	Рақмет сізге	ขอขอบคุณ	ありがとう
Indonesia Oil & Ga	tion: <u>https://memoir.sk</u> is Data Repository (MD	<u>kmigas.go.id/</u> R): <u>https://datamigas.esdm.</u> //www.esdm.go.id/wkmigas	-
investor@skkmiga	s.go.id		This document is strictly confident or circulated without SKK Migas' pri

This document is **strictly confidential** and may not be reproduced or circulated without SKK Migas' prior written consent.

14

Gas Commercialization Strategy

COLLABORATION AND INTEGRATION IS THE KEY

Collaboration between Upstream, Midstream, Downstream, and all stakeholders will optimize the utilization of Indonesian natural gas in supporting the achievement of SKK Migas' Long Term Vision

160

140

120

100

80

60

40

20

10%

OOIP (MMBO)

P50

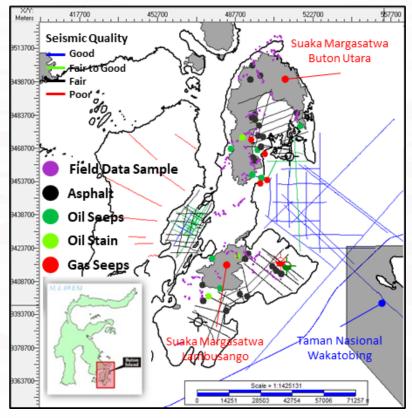
30%

Resource Calculation Buton Strait

MM1

EM1

MM


14%

12%

Geological Chance of Success

Area of Evaluation


Buton has long been known to have large asphalt deposits. This asphalt deposit is an oil field that was uplifted due to collision deformation so that its cap rock was eroded and the oil was degraded into asphalt. In addition, there are also many oil and gas seeps which indicate that there are active petroleum systems in Buton, and therefore oil and gas fields potentials are high.

Figure 2. Regencies in which nearby planned and existing smelters are located

Data Availibility

- 5 Wells
- 125 Multi vintage seismic line
- Gravity Data
- Field Samples
- DEMNAS, GEBCO, TGS Nopec
- **3 Play Concepts** are established;
 Paleo-structure play, FTB play,
 Strike slip play.
- Multiple sub basins.
- Evidence of **multiple source rock**.
- Over **9000 MMBOe (P01 Unrisked)** potential.

Resources Calculation

Resource Calculation North Buton

MM1

10%

MM5

Geological Chance of Success

C4

140,00

120,00

100,00

80,00

60,00

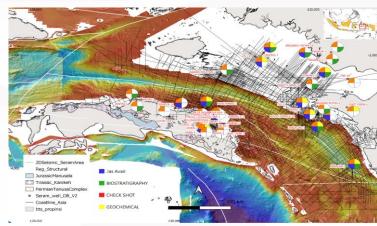
40,00

20,00

0.00

0%

OOIP (MMBOE)

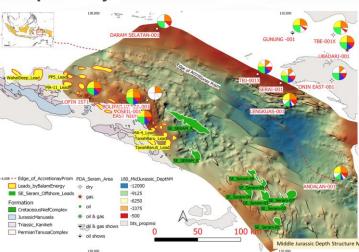

P50

or circulated without SKK Migas' prior written consent.

Data Availibility

Database

- Seismic (±1295 2D lines various vintages ~549220.2 KM)
- Wells (Employed 18 Key Wells)
- Gradient Geothermal Map
- HC Seeps


Prospectivity

Convergent of three major plates; Eurasia, Australia and Pacific Plates

Located at triple junction

- Closely related to tectonic evolution of northern Australian Margin and Pacific system (Oblique Convergent)
- Water depth in the Seram Offshore Area is around 500m -2000m at the deepest, whereas onshore Seram (Island) is mainly hilly

Resources Calculation

Summary Area Seram

Opportunities

- In Seram (onshore), Oseil oil field and Lofin giant gas discovery demonstrated Jurassic Manusela carbonate play is proven. Many leads were identified within the onshore area.
- Several wells (supported by seismic data) indicate that the permo-Triassic section is thickening to the west (Seram trough) which is potential SR.
- Several seismic shows carbonate features exist in offshore areas, which are supported by residual gravity and magnetic data.

Challenges

Offshore leads located at water depths around 1000m

		Water	Area	Oil Case (P	250) / MMBOE	Gas Case	(P50) / BSCFG	GCF	Possibility of	D'ala	Rock Propertie	es (Para	meter)
No.	Lead Name	Depth (m)	(acre)	In Place	Recoverable	In Place	Recoverable	Total	Success	Risk		P10	P50
1	SE Seram A	700	90,934.70	2708	400.17	4539.7	3179.4	0.27	0.9	Low	Net/Gross (NTG)	0.25	0.19
2	SE Seram B	750	21,992.40	1,753	257.571	2,932.69	2,046.29	0.27	0.9	Low	Porosity (Φ)	0.09	0.08
3	SE Seram 001	800	14,356.80	900.22	137.58	464.7	323.6	0.16	0.7	Medium	Water Saturation	0.71	0.6
4	SE Seram 002	1250	19,768.40	1,149	169.312	1,923.65	1,337.57	0.16	0.7	Medium	Oil Volume Factor	1.3	1.2
5	SE Seram 003	1500	26,440.20	109.27	14.472	143.61	106.17	0.16	0.7	Medium	(Bo) Oil Recovery Factor		
6	SE Seram 004	1350	17,544.40	182.16	27.002	306.98	213.6	0.16	0.8	Low	(ORF)	0.2	0.14
7	SE Seram 005	1350	13,961.50	210.01	30.96	355.10	248.93	0.16	0.7	Medium	Gas Volume Factor (Bg)	300	245
8	SE Seram 006	1500	13,714.30	307.57	45.51	522.69	363.68	0.16	0.7	Medium	Gas Recovery Factor		
9	SE Seram 007	1650	14,949.90	276.24	40.62	331.91	235.69	0.16	0.5	Medium	(GRF)	0.8	0.69

This document is **strictly confidential** and may not be reproduced or circulated without SKK Migas' prior written consent.

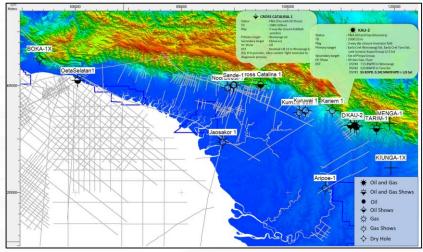
Figure 2. Regencies in which nearby planned and existing smelters are located

SES. 202

8

P90 0.15 0.07 0.5

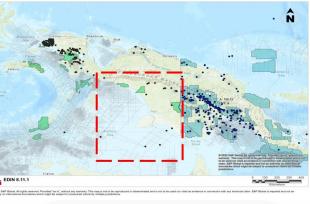
1.1

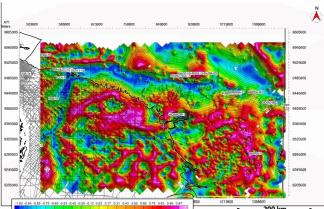

0.1

200

0.6

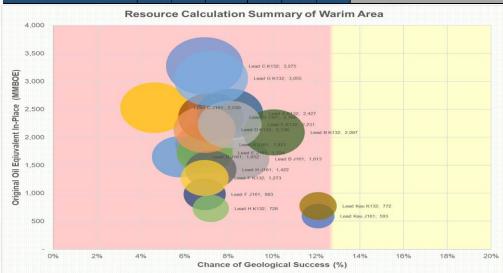
skkmigas Area of Evaluation


- 1. Warim Area is situated on a foreland and margin of foldthrust belt basin trend, one of the world class basin type that is also similar geological setting with PNG area to the east
- 2. West Papua including Warim area is under explored area compare to the PNG area to the east. Limited data both well and seismic including others and need additional data to improve confidence level for exploration
- 3. The current study concludes that the Warim area is promising and has high potential for hydrocarbon accumulations but has some challenges to conduct the exploration such as remote area, difficult geographic conditions (high and rugged mountainous to the north and swampy to the south) and no infra structure.


Data Availibility

24 Well Data

SEISMIC DATA with Various Vintage

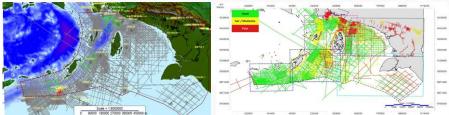

- 190 lines onshore
- 8 lines across onshore to offshore
- 216 lines offshore
- FTG (KKPJM) 2020

Resources Calculation

No	Lead	Horizon Age	STOEOIP (mmboe)			Oil Equivalent Recoverable Resources (mmboe)			Pg (%)	Remarks	Seismic 2D
			P90	P50	P10	P90	P50	P10			Coverage
1	Lead Kau J161	Late Jurassic	159	593	2,246	42	149	546	12.10%	Medium Risk	9
2	Lead A J161	Late Jurassic	469	1,871	7,475	125	470	1,805	6.91%	High Risk	3
3	Lead B J161	Late Jurassic	404	1,613	6,442	107	405	1,555	8.64%	High Risk	3
4	Lead C J161	Late Jurassic	634	2,530	10,108	169	635	2,440	4.61%	High Risk	1
5	Lead D J161	Late Jurassic	414	1,652	6,599	110	415	1,593	5.76%	High Risk	1
6	Lead E J161	Late Jurassic	432	1,724	6,887	115	433	1,663	6.91%	High Risk	1
7	Lead F J161	Late Jurassic	246	983	3,928	66	247	948	6.91%	High Risk	2
8	Lead G J161	Late Jurassic	591	2,360	9,427	157	593	2,276	7.20%	High Risk	7
9	Lead H J161	Late Jurassic	356	1,422	5,682	95	357	1,372	7.20%	High Risk	6
10	Lead Kau K132	Early Cretaceous	208	772	2,898	55	194	697	12.10%	Medium Risk	9
11	Lead A K132	Early Cretaceous	618	2,427	9,663	165	616	2,295	8.06%	High Risk	3
12	Lead B K132	Early Cretaceous	532	2,087	8,312	142	530	1,974	10.08%	High Risk	3
13	Lead C K132	Early Cretaceous	834	3,275	13,042	222	832	3,098	6.91%	High Risk	1
14	Lead D K132	Early Cretaceous	545	2,138	8,514	145	543	2,023	6.91%	High Risk	1
15	Lead E K132	Early Cretaceous	568	2,231	8,886	151	567	2,111	8.06%	High Risk	1
16	Lead F K132	Early Cretaceous	324	1,273	5,068	86	323	1,204	6.91%	High Risk	2
17	Lead G K132	Early Cretaceous	778	3,055	12,164	207	776	2,889	7.20%	High Risk	7
18	Lead H K132	Early Cretaceous	150	728	2,960	125	468	1,742	7.20%	High Risk	6
	то	TAL	8,262	32,734	130,302	2,285	8,551	32,231			

This document is **strictly confidential** and may not be reproduced or circulated without SKK Migas' prior written consent.

Figure 2. Regencies in which nearby planned and existing smelters are located

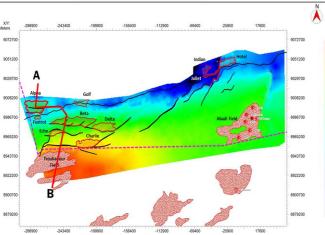


Sector 1 Abadi Sector 1 Abadi COBRAGE COBRA

- Mid-Jurassic sandstone play exists along the shelf margin along Sector 1, 2 and 4
- Cretaceous turbidite and basin-floor fan play around the Sindoro Embayment extends to Babar-Selaru area
- Paleocene turbidite and basin-floor fan play around the Sindoro Embayment
- Mid-Miocene carbonate around the Aru Trough
- Available data over Sector 2 is very sparse for prospectivy mapping.
- Sector 5 is considered least prospective due to tight Palaeozoic reservoir.

Data Availibility

Data Quality



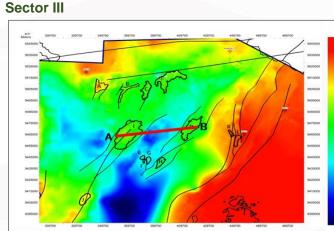

A total of over 2000 seismic 2D lines (over 150,000 km length of survey) of various vintages and quality, five 3D seismic volumes (over 20,000 sqkm survey) and 61 wells were used to support the evaluation.

Figure 2. Regencies in which nearby planned and existing smelters are located

Arafura area is under-explored. Exploration potential exists along the shelf margin at west and north sides of the Arafura Platform across Sector 1, 2, 3 and 4 with variety of plays in following areas.

Sector I

Summary Area Aru-Arafura

	SECTOR I (ABADI)												
he ss	No	Lead	Water Depth (m)	Δrea		RR (BCFG)	Chance of Success	Risk					
	1	Alpha	2700	279	11640	7700	10-15%	High					
	2	Beta	2000	374	20190	14000	15-20%	High					
	3	Charlie	e 700	198	3430	2400	15-20%	High					
y	4	Delta	1050	207	5870	4100	15-20%	High					
-1965,638 -2104,985 -2244,333 -2383,681	5	Echo	1650	64	2000	1400	15-20%	High					
-2523.029 -2662.376 -2801.724 -2941.072	6	Foxtro	t 3300	22	370	260	<10%	Very High					
-3080.420 -3219.768 -3359.115 -3498.463 -3637.811	7	Golf	2900	23	1440	1010	<10%	Very High					
-3637,811 -3777,158 -3916,506 -4055,854 -4195,202 -4334,550	8	Hotel	1050	120	3480	2440	<10%	Very High					
-4334,550 -4473,897 -4613,245 -4752,593	9	Indiar	1500	56	1230	860	<10%	Very High					
-4891.940 -5031.288 -5170.636 -5309.984	10	Juliet	1800	33	525	370	<10%	Very High					
-5309/364 -5449.332 -5588.679 -5728.027 -5867.375	TOTAL 50175 34540												
-5601,313 -6006,723 -6146,070 -6285,418 -6424,766 -6564,114		SECTOR III (ARU)											
6703,461 6842,805 6862,157 -7121,504 -7260,853 -7400,200 -7539,548	No	Lead	Water Depth (m)	Area	OOIP	RR (MMBOE)	Chance of Success	Risk					
	No	Lead A		Area	OOIP	RR		Risk High					
			Depth (m)	Area (sq.Km)	OOIP (MMBOE)	RR (MMBOE)	of Success						
-7420, 520 -7400, 200 -7539, 548	1	A	Depth (m) 900	Area (sq.Km) 55	ООІР (ММВОЕ) 400	RR (MMBOE) 130	of Success 10-15%	High					
90,930 -114,317 -114,317 -114,317 -318,565 -1135,5656 -1135,5656 -1135,5656 -1135,5656	1 2	AB	Depth (m) 900 1500	Area (sq.Km) 55 45	00IP (MMBOE) 400 230	RR (MMBOE) 130 80	of Success 10-15% 10-15%	High High					
99,930 -114,317 -318,965 -114,317 -318,965 -123,816 -123,806 -133,806 -133,806 -133,806	1 2 3	A B C	Depth (m) 900 1500 1600	Area (sq.Km) 55 45 61	00IP (MMBOE) 400 230 520	RR (MMBOE) 130 80 170	of Success 10-15% 10-15%	High High High					
-7200 853 -7200 253 -7539 544 -7539 544 -7539 544 -7539 544 -7539 544 -727 0459 -727 0	1 2 3 4	A B C D	Depth (m) 900 1500 1600 1800	Area (sq.Km) 55 45 61 132	OOIP (MMBOE) 400 230 520 1270	RR (MMBOE) 130 80 170 420	of Success 10-15% 10-15% 10-15%	High High High High					
90,930 -114,317 -114,317 -114,317 -318,565 -1135,5656 -1135,5656 -1135,5656 -1135,5656	1 2 3 4 5	A B C D E	Depth (m) 900 1500 1600 1800 3000	Area (sq.Km) 55 45 61 132 9	OOIP (MMBOE) 400 230 520 1270 80	RR (MMBOE) 130 80 170 420 25	of Success 10-15% 10-15% 10-15% <10-%	High High High High Very High					
140.20 7603.20 7603.54 7603.54 7603.54 7603.54 7603.54 770.06	1 2 3 4 5 6	A B C D E F	Depth (m) 900 1500 1600 1800 3000	Area (sq.Km) 55 45 61 132 9 4	OOIP (MMBOE) 400 230 520 1270 80 75	RR (MMBOE) 130 80 170 420 25 25	of Success 10-15% 10-15% 10-15% <10%	High High High High Very High Very High					
140.20 7603.20 7603.54 7603.54 7603.54 7603.54 7603.54 770.06	1 2 3 4 5 6 7	A B C D E F G	Depth (m) 900 1500 1600 3000 3000 3000 2900	Area (sq.Km) 55 45 61 132 9 4 14	OOIP (MMBOE) 400 230 520 1270 80 75 180	RR (MMBOE) 130 80 170 420 25 25 60	of Success 10-15% 10-15% 10-15% <10% <10%	High High High High Very High Very High Very High					
140.20 7603.20 7603.54 7603.54 7603.54 7603.54 7603.54 770.06	1 2 3 4 5 6 7 8	A B C D E F G H	Depth (m) 900 1500 1600 1800 3000 3000 2900 2750	Area (sq.Km) 55 45 61 132 9 4 14 14 34	OOIP (MMBOE) 400 230 520 1270 80 75 180 170	RR (MMBOE) 130 80 170 420 25 25 25 60 55	of Success 10-15% 10-15% 10-15% <10% <10% <10%	High High High High Very High Very High Very High Very High					
140 200 7009 500 7009 500 7009 500 7009 500 7009 500 700 500 7000 70	1 2 3 4 5 6 7 8 9	A B C D E F G H I	Depth 900 1500 1600 3000 3000 2900 2750 1500	Area (sq.Km) 55 45 61 132 9 4 14 34 281	OOIP (MMBOE) 400 230 520 1270 80 75 180 170 2960	RR (MMBOE) 130 80 170 420 25 25 25 60 55 985	of Success 10-15% 10-15% 10-15% <10.15%	High High High High Very High Very High Very High Very High High					
190 500 -7003 540 -7003 540 -7003 -7003 540 -7003 540 -7	1 2 3 4 5 6 7 8 9 10	A B C D E F G H I J	Depth 900 1500 1600 3000 3000 2900 2750 1500 650	Area (sq.Km) 55 45 61 132 9 4 14 34 281 48	OOIP (MMBOE) 400 230 520 1270 80 75 180 170 2960 700	RR (MMBOE) 130 80 170 420 25 25 60 55 985 230	of Success 10-15% 10-15% 10-15% <10%	High High High Very High Very High Very High Very High High					

This document is **strictly confidential** and may not be reproduced or circulated without SKK Migas' prior written consent.

Prospectivity

-636370

WT-07

-636370

WT-01

-560370

WT-0

M Jura untested play as the

1st trap in front of kitchen

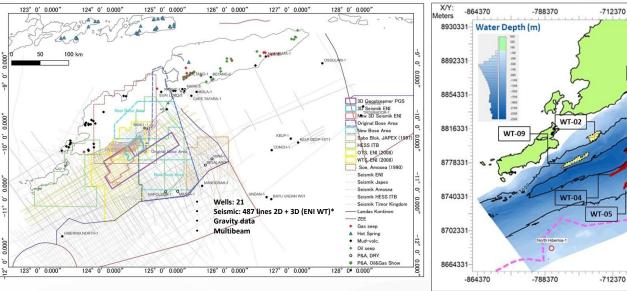
Mesozoic Sub-Thrust Play

-560370

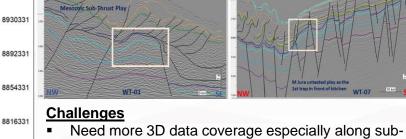
Scale = 1:300662

WT-03

-484370


8778331

8740331


8702331

8664331

-484370

- 1. As part of the passive margin of Australia, present day of Timor Trough is interpreted not as a subduction trench but as a fore deep within the Australian margin
- 2. In the offshore area, 2D and 3D seismic data are available with fair-good quality. However, in the onshore area, only few 2D lines acquired with very poor data quality
- 3. Most dry wells drilled in the area far from the kitchen, hence lack of charge/migration. Current evaluation found first-traps favorable for short-distance migration
- 4. Potential Source Rocks in Timor mainly is Triassic Aitutu Fm. (Kerogen Type II, oil prone) and Babulu Fm. (Kerogen Type III)
- Banli-1 well data shows good reservoir quality with source rocks maturity is in oil window.
- 6. Recent oil discovery at Kumbili-1 well in Timor Leste proves the presence of working hydrocarbon system in Triassic interval.

thrust trend close to Bena Deep (Play type 2)

Summary Area Timor

 2D seismic data: challenging operation to acquire onshore seismic data, however worth to define The Banli sub-thrust closure

Opportunities

- Under explored Foreland and Sub-Thrust Mesozoic oil/gas play with oil prone source rock potential of Early Jurassic and Triassic Aitutu Formation (onshore outcrop).
- Under explored Neogene piggy-back similar to Onshore Timor Leste Proven Play

Resources Calculation		Gas	Case	Oil	Case		
Lead	Location	OGIP (bcf)	Recoverable (bcf)	OOIP (Mmbo)	Recoverable (MMBo)	Possibility of success	Risk
Leau	Location	P50 P50		P50	P50	(Play Chance x GCF)	RISK
WT-01	West of Timor Through	3,932	2787	655	196.6	0,31	Low
WT-02	West of Timor Through	3,160	2210	527	158	0,26	Low
WT-03	West of Timor Through	4,479	3120	747	223.95	0,14	Moderate
WT-04	East of Timor Through	658	464	110	32.9	0,11	Moderate
WT-05	East of Timor Through	2,340	1658	390	117	0,05	High
WT-06	Timor Through	2,878	2005	480	143.9	0,14	Moderate
WT-07	Timor Through	4,118	2890	686	205.9	0,06	High
WT-08	Timor Through	4,946	3486	824	247.3	0,04	High
WT-09	West of Timor Through	3,164	2193	527	158.2	0,26	Low
	TOTAL	29,675	20,813	4,946	1,484		

This document is **strictly confidential** and may not be reproduced or circulated without SKK Migas' prior written consent.

